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We perform an exact enumeration study of polymers formed from a (quenched) random sequence
of charged monomers +go. Such polymers, known as polyampholytes, are compact when completely
neutral and expanded when highly charged. Our exhaustive search includes all spatial conformations
and quenched sequences for up to 12-step (13-site) walks. We investigate the behavior of the polymer
as a function of its overall excess charge Q and temperature T'. At low temperatures there is a phase
transition from compact to extended configurations when the charge exceeds Q. ~ gov/N. There
are also indications of a transition for small Q between two compact states on varying temperature.
Numerical estimates are provided for the condensation energy, surface tension, and the critical

exponent v.

PACS number(s): 36.20.—r, 33.15.—e, 64.60.—1i, 41.20.—q

I. INTRODUCTION

Given their ubiquity in nature, long chain macro-
molecules have been the subject of considerable study.
Whereas there is now a reasonably firm basis for un-
derstanding the physical properties of homopolymers [1],
considerably less is known about the heteropolymers of
biological significance. From a biologist’s perspective, it
is the specific properties of a particular molecule that are
of interest. After all, the genetic information is coded by
very specific sequences of nucleic acids, which are in turn
translated to the chain of amino acids forming a pro-
tein [2]. The energy of the polymer is determined by
the van der Waals, hydrogen bonding, hydrophobic or
hydrophilic, and Coulomb interactions between its con-
stituent amino acids. In accord to these interactions, the
protein folds into a specific shape that is responsible for
its activity. Given the large number of monomers making
up such chains, and the complexity of their interactions,
finding the configuration of a particular molecule is a
formidable task. In contrast, a physicist’s approach is to
sacrifice the specificity, in the hope of gleaning some more
general information from simplified models [3]. There
are, in fact, a number of statistical descriptions of ensem-
bles of molecules composed of a random linear sequence
of elements with a variety of interactions that determine
their final shapes [4]. These simple models of heteropoly-
mers are of additional interest as examples of disordered
systems with connections to spin glasses [5], with the ad-
vantage of faster relaxation [6,7].

There are a number of recent experimental studies of
solutions [8] and gels [6,7] of polymers that incorporate
randomly charged groups. As statistical approaches only
provide general descriptions of such heteropolymers, we
focus on simple models which include the essential in-
gredients. The overall size and shape of a polymer with
charged groups is most likely controlled by the Coulomb
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interactions that are the strongest and with the longest
range. We shall consider the typical properties of a model
polyampholyte (PA) [9]: a flexible chain in which each of
the N monomers has a fixed charge +qo selected from a
well defined ensemble of quenches. The polymer has a
characteristic microscopic length a (such as the range of
the excluded-volume interaction, or nearest neighbor dis-
tance along the chain). In the numerical studies we fur-
ther simplify the model by considering only self-avoiding
walk (SAW) configurations on a cubic lattice with lattice
constant a.

The long-range nature of the Coulomb interactions,
combined with the randomness of the charge sequence,
produces effects that are quite distinct from systems with
short-range interactions. In Sec. II we use the knowl-
edge accumulated in previous studies [10-15] to explore
the phase diagrams of quenched PAs in d dimensions. In
particular, we show that for d > 4, the behavior of the
PAs is similar to that of random chains with short-range
interactions, while for d < 4 the spatial conformations of
a PA strongly depend on its excess charge Q = Zf;l qi-
In every space dimension d < 4, there is a critical charge
Qg such that PAs with @ > Qg cannot form a com-
pact state. The probability of a randomly charged PA
to have such an excess charge depends on both d and
its length. In the N — oo limit the excess charge will
always (i.e., with probability 1) be “small” for d > 3 and
“big” for d < 3. Thus, investigation of the “borderline”
three-dimensional case provides valuable insight into the
behavior of the system in general space dimensions.

In Sec. III we summarize previous results for PAs in
d = 3: analytical arguments and Monte Carlo (MC) stud-
ies indicate that the PA undergoes a transition from a
dense (“globular”) to a strongly stretched configuration
as Q exceeds Q. =~ qoN'/2. The MC simulations [12-15]
were performed for polymer sizes up to N = 128 and
in a wide range of temperatures. They, however, could

835 ©1995 The American Physical Society



836 YACOV KANTOR AND MEHRAN KARDAR 52

not provide information on the energy spectrum of PAs,
and on very low temperature properties. In this work
we undertake a complete enumeration study of PAs for
all possible quenches up to N = 13, and are thus able
to present very detailed results regarding energetics and
spatial conformations of short PAs. The details of the
enumeration procedure are explained in Sec. IV, while
the results are described in Secs. V and VI. The majority
of these results add further support to the predictions of
MC studies, and provide some details which could not be
measured by MC studies (e.g., density of states, conden-
sation energy, and surface tension in the globular phase).
We also find some indication that PAs with small Q may
undergo a phase transition between two dense states. No
signs of this transition could be detected in the MC stud-
ies, because it occurs at temperatures too low for that
procedure to equilibrate.

II. POLYAMPHOLYTE PHENOMENOLOGY

It is helpful to view the problem in the more general
context of a variable space dimension d. Let us consider
a continuum limit in which configurations of the PA are
described by a function 7(z). The continuous index z is
used to label the monomers along the chain, while 7 is
the position of the monomer in d-dimensional embedding
space. The corresponding probabilities of these config-
urations are governed by the Boltzmann weights of an

effective Hamiltonian,
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In this equation, Hy represents the entropic properties
of the connected chain (ideal polymer), H, is the con-
tinuum description of the excluded volume interactions,
while H, represents the d-dimensional electrostatic en-
ergy. For each PA, there is a specific (quenched) func-
tion g(x) representing the charges along the chain. (In
this work we set kg = 1 and measure T in energy units.)

In the simplest ensemble of quenches, each monomer
takes a charge +go independent of all the others; i.e.,
§iq; = 0;jq2, where the overline indicates averaging over
quenches. While the average charge of such PAs is zero,
a “typical” sequence has an excess charge of about +Q.,
with Q. = goN'/2. This statement, as well as the def-
inition of Q., are unrelated to the embedding dimen-
sion d. However, the importance of charge fluctuations
(both for the overall polymer, or large segments of it)
does depend on the space dimension. The electrostatic
energy of the excess charge, spread over the character-
istic size of an ideal polymer (R o« N/2), grows as
Q?/R4~2 ~ N(#=4)/2_ This simple dimensional argument
shows that for d > 4 weak electrostatic interactions are
irrelevant. (The excluded volume effects are also irrel-
evant in d > 4.) Thus, at high temperatures the PA

behaves as an ideal polymer with an entropy-dominated
free energy of the order of —NT'. However, upon lower-
ing the temperature it collapses into a dense state, tak-
ing advantage of a condensation energy of the order of
—NgZ/a?~2. This collapse is similar to the well known 6
transition of polymers with short-range interactions and
will be discussed later in this section.

For d < 4, electrostatic interactions are relevant and
the high temperature phase is no longer a regular self-
avoiding walk. At high temperatures the behavior of
the polymer can be studied perturbatively. For the
above ensemble of uncorrelated charges, the lowest or-
der (1/T) correction to the quench-averaged R2 vanishes
[12,13]. However, if we restrict the ensemble of quenches
to sequences with a fixed overall excess charge of Q,
there is a lowest order correction term proportional to
Q — Q.. Thus PAs with @ less than Q. contract while
those with larger charges expand. This trend appears
in any space dimension d, and is indicated by the ver-
tical line at the top of Fig. 1. It should be noted that
restricting the ensemble to yield fixed Q slightly modi-
fies the quench-averaged charge-charge correlations. In
particular, the two-point correlation function becomes
7:q; = (Q* — Q%)/N? for i # j. This small (order of
1/N) correction to the correlation function may cause a
significant change in R_f] due to the long-range nature of
the Coulomb interaction.

The above discussion can be extended to PAs with
short-range correlations along the sequence: If neighbor-
ing charges satisfy g;giz1 = g2\ [16] where —1 < X < 1,
with no further restrictions, then g;g; = g2\ ~%l. The
resulting ensembles contmuously interpolate between the
deterministic extremes of an alternating sequence (A =
—1) and a uniformly charged polyelectrolyte (A = 1). As
in the case of uncorrelated charges, we can impose an
additional constraint on the overall charge, resulting in
the correlations

@g; = oA+ [QF - QZ(V)/N? 2)
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FIG. 1. Qualitative phase diagram of a PA as a function

of temperature T and its excess charge Q. See the text for
details.
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where Q%(A) = ¢ZN(1 + X)/(1 — )\). We note that the
variance of @ in such a correlated sequence also becomes
giN(1+ A)/(1 — A). Thus the proportion of quenches
with @ above or below Q.(A) is independent of A. All
the results for uncorrelated sequences remain valid if we
substitute Q.(A) for Q.. As |A| — 1, the behavior of the
PA crosses over from that of a random sequence to the
deterministic (alternating or homogeneous) one. How-
ever, the crossover occurs only for [A\| —1 = O(1/N).
As typical of the qualitative behavior outside this nar-
row interval, we concentrate on the uncorrelated case of
A=0.

A short distance cutoff a, such as the range of the
excluded volume interaction, introduces a temperature
scale g2/a?~2. For d > 4 the electrostatic interactions in
random PAs are effectively short ranged. Previous results
on a random short-range interaction model [17] (RSRIM)
in d = 3 indicate that, as long as the positive and neg-
ative charges are approximately balanced, the polymer
assumes spatial conformations where the interactions are
predominantly attractive. To maximize this attraction,
the chain undergoes a transition from an expanded to a
collapsed (dense) state at a @ transition. For truly short-
range interactions, the @ transition disappears only for
a rather strong charge imbalance of @ ~ N. Even if as
a result of the relevant Coulomb interactions in d < 4,
the high temperature phase of uncorrelated PAs turns
out to be compact, we cannot exclude the possibility of
a transition into another dense (possibly glassy) state
when T decreases below a critical §g. Such a potential
“fg transition,” as indicated by the horizontal dashed
line in Fig. 1, must be different from a regular collapse
since the lower density phase is not a self-avoiding walk.
The compact phase can also be destroyed by increasing
the net charge as described in the following paragraph.

A dense globular PA droplet of radius R ~ aN1/¢ has
a surface energy of YR~ where v ~ ¢2/a?¢~3 is the
surface tension. For small @, the surface tension keeps
the PA in an approximately spherical shape. However,
as shown in the Appendix, at sufficiently large @ elec-
trostatic forces destabilize the droplet. Comparing the
electrostatic (oc Q%/R%~2) and surface energies indicates
that the droplet shape is controlled by the parameter
a = Q?/Q%, where Qr ~ goN'73/2¢ is the Rayleigh
charge. For a large enough « a spherical shape is unsta-
ble (a charged liquid droplet disintegrates). The Rayleigh
charge in d = 3 is proportional to Q. = gov'N, while for
d > 3 (d < 3) it increases faster (slower) than Q.. The
solid vertical line at the bottom of Fig. 1 shows the po-
sition of this instability in d = 3. Clearly, any 0g transi-
tion (if at all present) must also terminate at Q. Only
a negligible fraction of random quenches in d > 3 have
Q exceeding Qpg, and thus a typical PA is a spherical
droplet at low T'. Conversely, in d < 3 almost all PAs
have charges larger than Qg and the dense phase does
not exist. The borderline case of d = 3, where a finite
fraction of PAs have @Q exceeding Qg, is the most con-
troversial: An analogy with uniformly charged polyelec-
trolytes [18] suggests [10] that the PA is fully stretched
(v = 1) in this case [10]. In contrast, a Debye-Hiickel in-
spired theory [11] predicts that low-T configurations are
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compact. Partial resolution of this contradiction comes
from the observation [12,13] that PAs in d = 3 are ex-
tremely sensitive to the excess charge Q. In the following
section we shall briefly review the main features of three-
dimensional PAs obtained by MC simulations [14,15].

III. MONTE CARLO RESULTS IN THREE
DIMENSIONS

Numerical simulations are performed on a discretized
version of Eq. (1). Configurations of a polymer are spec-
ified by listing the position vectors {r;} (¢ = 1,...,N)
of its monomers. The shape and spatial extent of the
polymer are then characterized by the tensor,

1 N 1 N N
S;uz = N Z"'iuriv - J_V—E Zriu eru ’ (3)
i=1 =1 j=1

with the greek indices labeling the various components.
Thermal averages of the eigenvalues A; > Az > Az of this
tensor (sometimes referred to as moments of inertia) are
used to describe the mean size and shape; their sum is
the squared radius of gyration, R; = trS. Since we are
dealing with sequences of quenched disorder, these quan-
tities must also be averaged over different realizations of
{¢;}. In three dimensions, uniform uncharged polymers
in good solvents are swollen; their R, scaling as N” with
v = 0.588 as in self-avoiding walks. Polymers in poor
solvents are “compact,” i.e., described by v = 1/3.

In previous work [14,15] we used Monte Carlo (MC)
simulations (along with analytical arguments) to estab-
lish the following properties for PAs immersed in a good
solvent.

(a) The radius of gyration strongly depends on the
total excess charge @, and is weakly influenced by other
details of the random sequence.

(b) A 1/T expansion indicates that the size of a PA
tends to decrease upon lowering temperature if Q is less
than a critical charge Q. = go/N'/2, and increases other-
wise. This behavior is confirmed by MC simulations.

(c) At low temperatures, neutral polymers (Q = 0)
are compact in the sense that their spatial extent in any
direction grows as aN/3, where a is a microscopic length
scale.

(d) The low-T size of the PA exhibits a sharp depen-
dence on its charge: R, is almost independent of Q for
Q < goV'N, and grows rapidly beyond this point. This
increase becomes sharper as the temperature is lowered,
or as the length of the chain is made longer.

We interpret the low temperature results by an analogy
to the behavior of a charged liquid drop. The energy
(or rather the quench averaged free energy) of the PA is
phenomenologically related to its shape by

2
E'—‘—ECN+’)’S+2%~. (4)
The first term is a condensation energy proportional to
the volume (assumed compact), the second term is pro-
portional to the surface area S (with a surface tension 7),
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while the third term represents the long-range part of the
electrostatic energy due to an excess charge Q (b is a di-
mensionless constant of order unity). The optimal shape
is obtained by minimizing the overall energy. The first
term is the same for all compact shapes, while the com-
petition between the surface and electrostatic energies is
controlled by the dimensionless parameter

Q? Q* _ @

167R3y 12V~ Q%

(5)

a

Here R and V are the radius and volume of a spherical
drop of N particles, and we have defined the Rayleigh
charge Qg [see Eq. (A3) of the Appendix for the defini-
tion of Qg in a general dimension d]. The dimension-
less parameter « controls the shape of a charged drop: A
spherical drop becomes unstable and splits into two equal
droplets for a > 0.3. We argued in Refs. [14,15] that the
quenched PA has a similar instability at the vertical line
in the bottom of Fig. 1: Charged beyond a critical «,
the PA splits to form a necklace of blobs connected by
strands. From the definition of Qg it is clear that it is
proportional to Q.; the dimensionless prefactor relating
the two depends on v and is estimated in this work.

(e) While confirming the general features of Fig. 1, the
MC simulations provide no indication of the suggested 6g
transition. However, these simulations are not reliable at
very low temperatures [19] due to the slowing down of
the equilibration process.

All the above results were obtained by MC simula-
tions for PAs of between 16 and 128 monomers. Since the
MC procedure does not provide good equilibration at low
T, we could not determine the properties of the ground
states (although some conclusions were drawn from the
low-T data). Systems with Coulomb interactions are par-
ticularly poorly equilibrated, even at densities of only
10% the maximal value. To remedy these difficulties, in
this work we resorted to a complete enumeration of all
possible spatial conformations and all possible quenched
charge sequences. While such an approach enables us to
obtain exact results, and detailed information not avail-
able in MC studies, the immensity of configuration space
restricts the calculation to chains of at most 12 steps (13
monomers).

IV. THE ENUMERATION PROCEDURE

We considered self-avoiding walks (SAWs) on a simple
cubic lattice of spacing a. An L-step SAW has N = L+1
sites (atoms), and the randomly charged polymer is de-
fined by assigning a fixed sequence of charges (g; = *qo)
to its monomers. The charge sequence is considered to
be quenched, i.e., it remains unchanged when the spatial
conformation of the walk changes. The energy of any par-
ticular configuration is given by U = 3, _. ¢iq; /|7 — 751,
where 7; is the position of the ith atom on the three-
dimensional lattice. Thermal averages of various quan-
tities are calculated by summing over all conformations
with the Boltzmann weights of this energy. The result-
ing average is quench specific. We then obtain quenched
averages by summing over all possible realizations of the

sequence, possibly with certain restrictions such as on
the total excess charge Q = Y ¢;.

Our calculation consists of three steps: (a) Generating
lists of all spatial conformations and quench sequences;
(b) using the lists to calculate various thermodynamic
quantities for each quenched configuration; and (c) av-
eraging of results over restricted ensembles of quenches,
and analyzing the data. Since the calculational proce-
dure is extremely time consuming, we used precalculated
lists of all SAWSs, and of all possible sequences of charges
along the chains. Other programs then used these two
lists as input. Since the first list of all L-step SAWs with
3 < L < 12 is extremely large, we tried to reduce it by in-
cluding only “truly different” configurations and listing
their degeneracies. As the actual position of a walk in
space is not important, we disregard it and only give the
directions of the L steps. As the energy of a configuration
is independent of its overall orientation, we assume that
the first step is taken in the 4z direction. The above
trivial symmetries are not included in our counting; e.g.,
we assign a completely straight line the degeneracy of
m = 1. All SAWs, except for the straight line, have a
fourfold degeneracy related to rotation around the direc-
tion of the initial step. We shall therefore assume that
the first step which is not in the +z direction is taken
along the +y axis, and attribute a degeneracy m = 4 to
all walks which are not straight lines. Every nonplanar
walk has an additional degeneracy due to reflection in the
z-y plane, leading to a total degeneracy of m = 8. Thus
the list of all 12-step SAWSs consists of the directions of
11 successive steps, along with a degeneracy factor. The
total number of 4162866 chains consists of one straight
line (m = 1), 40616 planar SAWs (m = 4), and 4122249
nonplanar SAWs (m = 8). Accounting for degeneracies
reduces the length of the list and the time needed to cal-
culate various quantities by almost a factor of 8. Some
chains possess additional symmetries; e.g., by inverting
the sequence of steps we may get some other SAW in the
list. We did not take advantage of this symmetry because
the distribution of quenched charges on the chain is not
necessarily symmetric under interchange of its two ends.
In any case, we use the end to end exchange symmetry
in the listing of all possible quenches.

A second input list contains all possible charge se-
quences; each “quench” for an L-step walk has N = L+1
charges. Since the energy is unchanged by reversing the
signs of all charges, we considered only configurations in
which the total charge is @ > 0. This shortens the list by
almost a factor of 2. The majority of quenches are not
symmetric under order reversal, i.e., the sequence does
not coincide with itself when listed backwards. Since we
are exploring all spatial configurations, without account-
ing for the end-reversal symmetry mentioned in the pre-
vious paragraph, the list can be reduced by almost an-
other factor of 2 by considering only one of each pair of
such quenches (keeping track of the degeneracy). After
accounting for both charge and sequence reversal sym-
metries, the list for L = 12 (N = 13) has only 2080
entries.

For any sequence, the number of computer operations
required to calculate the energy of a single configuration
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grows as L2. The total number of SAWs grows as zZL*,
where z ~ 4.68 is the effective coordination number for
SAWs on a cubic lattice, and =~ 0.2. The number of
“quenches” grows as 2L. These factors limit the size of
chains which can be investigated to L = 12 steps. At this
L we needed four weeks of CPU time on a Silicon Graph-
ics R4000 workstation. An increase of L by a single unit
multiplies the calculation time by an order of magnitude.
Thus it is impractical to employ our procedure for chains
that are much longer than 12 steps. If, instead of com-
pletely enumerating all possible charge configurations we
confine ourselves to sampling a few hundred quenches,
the calculations can be extended to L = 13, but not
much further.

The order in which the calculations were performed is
as follows: for each SAW configuration we calculated the
radius of gyration, squared end-to-end distance, and the
energies of all possible quenched charge configurations
along the backbone. These energies were then used to
update histogram tables (a separate histogram of pos-
sible energies for each quench). Due to the long-range
nature of the Coulomb interaction, the allowed energies
form almost a continuous spectrum which we discretized
in units of 0.1¢2/a. This discretization was sufficient to
accurately reproduce properties of the system on the tem-
perature scales of interest. (For L < 10, we used a finer
division of the histograms to verify that the discretization
process does not distort calculation of such properties as
the specific heat, except at extremely low temperatures.)
In addition to histograms, we also collected data about
the energy, the radius of gyration, and the end-to-end
distance at the ground state of each quench.

The issue of the multiplicity of the ground state is
of much interest, and hotly debated in the context of

. models of proteins [20]. In the presence of Coulomb
interactions, due to the quasicontinuous nature of the
energy spectrum, the ground state is almost never de-
generate (except for the trivial degeneracies mentioned
above). It is quite likely that, for sufficiently long poly-
mers and specific quenches, there may be exactly degen-
erate ground states which are not related by symmetry
operations. However, for L < 12 such cases are extremely
rare. Moreover, the distance between the ground state
and the second-lowest energy state remains of the order
of 0.1¢%/a for all L’s in our calculation, even though at
higher energies the densities of the states increase very
rapidly with L.

We used these data to obtain averages over quenches
(with or without a constraint on the net charge). It
should be mentioned that creation of histograms, as well
as calculation of the thermal averages, required the cor-
rect accounting of degeneracies of spatial conformations,
while averages over quenches needed proper care of the
sequence degeneracies. For few selected quenches we also
performed a calculation of the density of states as a func-
tion of two variables, the energy and the squared radius
of gyration. Due to large amount of data, we could not
do such detailed studies for all possible quenches.

Figure 2 depicts ground states of four cases of quenched
charges with different excess charges Q. It provides qual-
itative support for the conclusions previously obtained

(b) (d)

FIG. 2. Spatial conformations of ground states for a sample
of L = 12 PAs, for values of Q/qo equal to (a) 1, (b) 3, (c) 7,
and (d) 9. Dark and bright shades indicate opposite charges.

from MC simulations: Fig. 2(a) depicts the ground state
configuration of an almost neutral PA which is quite com-
pact. The PA in Fig. 2(b) has Q slightly smaller than Q_;
while the configuration is still compact we see the begin-
ning of a stretching. Figures 2(c) and 2(d) show strongly
stretched configurations in cases where Q exceeds Q.. In
the following sections we will quantify these qualitative
observations.

As a by-product of the above procedure we also ob-
tained similar data for the model with short-range in-
teractions: In the random short-range interaction model
(RSRIM), a quenched sequence of dimensionless charges
¢; = %1 is defined along the chain. The interaction en-
ergy is U = 3, . Vij, where V;; = vogigq; if |7 — 75| = a,
and = 0, otherwise. While we shall compare and con-
trast several properties of short- and long-range models
in this paper, detailed results for RSRIM can be found
in Ref. [17]. The additional data were gathered with-
out a substantial increase in the total execution time of
the programs. There are a few minor differences in the
data collection process in the two models: (a) As the
energies of the RSRIM are naturally discretized, the re-
sulting histograms are exact. (b) The ground state of
most quenches is highly degenerate. This required keep-
ing track of the degeneracy, and obtaining the R; in the
ground state as an average lowest energy configurations.

V. ENERGY SPECTRA OF QUENCHED
POLYAMPHOLYTES

We begin our analysis by testing the validity of Eq. (4)
for the ground states of the polymers. Obviously, the ex-
act value of each ground state energy depends on the
details of the charge sequence. However, Eq. (4) im-
plies that the effect of the overall charge can be (ap-
proximately) separated; the remaining parts of the en-
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ergy depending only weakly on the details of the se-
quence. The basic energy unit of our model is g¢Z/a,
and a useful system for comparison is the regular crys-
tal formed by alternating charges (the “sodium chloride”
structure). The condensation energy per atom of such
a crystal (ec0 = 0.8738¢%/a) is much smaller than the
interaction energy per atom between the nearest neigh-
bors (3g2/a). This demonstrates the importance of the
long-range Coulomb interaction: although the system is
locally neutral, the ground state energy depends on an
extended neighborhood. Similarly, the surface tension
~o = 0.03g2/a® of the crystal is quite small.

Our first observation is that, for a fixed @, the ground
state energy is quite insensitive to the details of the se-
quence: Figure 3 depicts the ground state energies of
all 2080 possible quenches for 12-step (13-atom) chains.
(The horizontal axis represents an arbitrary numbering
of the quenches.) The energies are clearly separated into
seven bands, corresponding to excess charges of @ = 1, 3,
5, ..., 13. (There is only one quench with Q = 13.) While
each band has a finite width, we see that the energy of a
PA can be determined rather accurately by only specify-
ing its net charge Q. This is not the case for short-range
interactions: A comparison of histograms of ground state
energies between (a) PAs and (b) the RSRIM of length
L = 10 in Fig. 4 clearly shows the importance of long-
range interactions. There is a rather clear separation of
energies into “bands” with fixed values of @ for the PAs,
which is almost absent in the RSRIM. Of course, the fi-
nite width of each band shows that the details of the
sequence cannot be completely neglected, although their
influence on the ground state energy is rather small.

Using a Debye-Hiickel approximation [21], Wittmer et
al. [16] have performed a systematic study of the depen-
dence of the free energy of neutral PAs (Q = 0) at high
T on the correlations between neighboring charges along
the chain [see Eq. (2)]. They obtain an expression which
smoothly interpolates between the free energy densities
of a completely random sequence (= —T'x3/127, where
k71 is the Debye screening length), and a nonrandom al-
ternating sequence (= —0.00157'x*a) (the latter model
was also studied in Ref. [22]). These results exclude the
electrostatic self-interaction energy, which is infinite in
the continuum model used in Ref. [16]. Thus the free en-
ergy of the alternating chain is roughly 20 times smaller
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FIG. 3. Energies of the ground states [23] of all distinct
(i.e., unrelated by symmetry transformations) quenches (ar-
bitrarily numbered from 1 to 2080) of PAs with L = 12.

than the random one. While these results cannot be di-
rectly extended to the ground states, we may attempt to
obtain crude estimates by setting k™' = a and T' = ¢3/a.
However, our results indicate that the ground state en-
ergy of alternating polymers (= €c) is only smaller by
about 16% than the mean condensation energy of un-
restricted sequences. Such an inconsistency is partially
explained by the fact that the alternating PA has neg-
ative mean electrostatic energy (approximately 0.6¢2/a
per atom) even at T = oo, while such an energy for a
completely random PA (averaged over all quenches) van-
ishes. Thus, only about 1/4 of the ground state energy
of an alternating PA is its condensation energy. (This
part of the energy explicitly depends on the discreteness
of the chain and is not accounted for in Ref. [16].) This
argument brings the approximate conclusions based on
Ref. [16] in better qualitative agreement with our exact
enumeration results.

The dependence of the quench-averaged ground state

FIG. 4. Histograms of the numbers of
ground states versus their energies [23] for
chains of length L = 10 with charges Q =1
(dotted line), Q@ = 3 (solid line), Q = 5
(dashed line), and Q = 7 (dot-dashed line)
for (a) PAs and (b) polymers with random
short-range interactions. The size of the en-
ergy bins for these histograms is AE = 1.
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energies on the length of the chain is depicted in Fig. 5.
A restricted average is performed at each value of @ (in-
dicated next to each line). The scaling of the axes is
motivated by the recasting of Eq. (4) in the form

E A bQ?
NN et anes (©)

where A = vS/N?/3 = pya?, with a prefactor p depend-
ing on the average shape. The small number of data
points makes an accurate determination of A (and hence
the surface tension) rather difficult. Of course, the ap-
plication of Egs. (4) and (6) to such short chains is prob-
lematic. The value used in Fig. 5 is A = 0.6¢2/a, for
which the curves with different Q extrapolate to approx-
imately the same value, giving a condensation energy of
€. = (0.75 + 0.01)gZ/a. For this choice of A the slopes
of the curves with Q = 1,2, 3 approximately scale as Q2.
The condensation energy €. is surprisingly close to that
of a regular crystal (e.o = 0.8738¢Z/a), despite the fact
that in a random chain on average one neighbor (along
the chain) has the “wrong” sign (compared to the alter-
nating arrangement), costing an energy of the order of
€c0- This again confirms our contention that the ground
state energy is determined by very extended neighbor-
hoods of each particle. If the ground state configuration
has approximately cubic or spherical shape, then p =~ 5,
while for the slightly elongated objects that we obtain,
p can be somewhat larger (~8). Therefore, we estimate
v = (0.09 + 0.03)g2/a. The error bars indicate our un-
certainty in the values of p and A, and disregard pos-
sible systematic errors in attempts to evaluate surface
tension from such small clusters. Using these numbers
we estimate that the Rayleigh charge of the model PA is
approximately the same as Q., since

0.09¢3
a

Q% =129V =~ 12 aN? ~ ¢iN = Q2. (7)
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FIG. 5. Ground state energy (per particle) [23] as a func-
tion of the number of particles. Each full circle represents a
quench average at the values of Q denoted by the numbers
near the solid lines. (Q = N corresponds to a fully charged
polyelectrolyte.) The X symbols denote the average over all
quenches, unrestricted in charge.

(The relation V = a3 N assumes PAs of maximum possi-
ble density.) From Fig. 5 it is not clear that the (charge
unconstrained) average energies (indicated by the x sym-
bols) of all quenches also extrapolate to the same con-
densation energy of €.. This apparent inconsistency can
be understood by noting that since the quench averaged
Q? is equal to g2N, the last term in Eq. (6) scales as
N-1/3 = (N‘4ﬂ3)1/4. Thus, the linear approach (in
the variables used in Fig. 5) to asymptotic value (as
1/N%/3 - 0) is replaced by a very small power law. Such
a slow decay cannot be detected from the small values of
N used in our enumeration study.

Since our model is defined on a discrete lattice, the
allowed energies are discrete. However, as the length of
the chain increases the separations between the states
are reduced. The density of states becomes quasicontin-
uous and can be described by a function n(E). Figure 6
depicts s(E) = Inn(F)/N, where the overline denotes
averaging over all quenches with a fixed Q. (Note that
this quantity is not the quench-averaged free energy as
the average is performed on n rather than on Inn.) Not
surprisingly, the densities of states for different Q’s are
shifted with respect to each other. For every quench the
density of states is very high near the middle of the band
and decreases towards the edges.

We find that almost all PAs have a unique ground state
(up to trivial symmetry transformations). This is not the
case for short-range interactions [20] and may be an im-

- portant clue to the problem of protein folding. (For ease

of calculation, most studies of similar random copolymers
have focused on short-range interactions, and typically
find highly degenerate ground states.) Furthermore, the
gaps to the second lowest energy states typically remain
of order of 0.1g2/a (up to the studied size of L = 12),
while most interstate separations decrease with L. In the
L — oo limit, the density of lowest energy excitations of
our model PAs appears to decay faster than a power law.
(Of course our lattice model does not include any vibra-
tional modes.) This decay manifests itself in a vanishing
heat capacity in the T — 0 limit, as depicted in Fig. 7.

15

0.5 -

60

FIG. 6. Logarithms of quench-averaged densities of states
per atom (see text) for chains of L = 13 with the excess charge
Q set to 1, 3, 5, ..., 13 (from left to right).
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FIG. 7. The quench-averaged heat capacity per degree of
freedom for a random PA with Q = 0 (solid lines) and L = 3,
5, 7, 11 (from bottom to top); and for alternating-charge se-
quences (dashed lines) of similar lengths.

The solid lines represent the quench-averaged heat ca-
pacities per degree of freedom ¢, of PAs with Q = 0 at
low temperatures. (Since the energy fluctuations of a
polymer depend only on changes of its shape, and are
independent of its overall position and orientation, we
assumed that an N-atom PA has 3N — 5 degrees of free-
dom, where —5 represents a subtraction of translational
and rotational degrees of freedom. Such a choice de-
creases the bias in the IV dependence of ¢ which would
appear for very small values of N.) The vanishing heat
capacity was not observed in MC studies [14,15], where
poor equilibration at low T hinders measurement of c.

It is instructive to compare and contrast the behavior
of random PAs with vanishing excess charge to that of
an ordered alternating sequence; the latter is a highly
atypical member of the ensemble with @ = 0. Numerical
investigations of alternating charge sequences by Victor
and Imbert [22] show that such polymers undergo a col-
lapse transition, similar to SAWs with short-range attrac-
tive interactions. This is because the exact compensation
in the charges of any pair of neighboring monomers leads
to large scale properties determined by dipole-dipole (and
faster decaying) interactions. Thus Coulomb interactions
are irrelevant in the high temperature phase of the al-
ternating chain that consequently behaves as a SAW.
By contrast, even though we consider a subensemble of
quenches with @ = 0, the charge fluctuations cannot be
neglected in random PAs and control the long distance
behavior of the chain. Such PAs are compact at any
temperature.

The attractive dipole-dipole interactions eventually
cause the collapse of the alternating charge sequence to
a compact state at temperatures below a 6 point. Of
course, the ground state of such a chain is the ordered
NaCl crystal discussed earlier. However, it is not clear if
the state of the chain immediately below the 6 temper-
ature is the ordered crystal. Another possibility is that
the initial collapse is into a “molten globular” (liquid
like) state [3], which then crystallizes at a lower temper-
ature. We singled out the alternating PAs in our com-
plete ensemble of quenches; the dashed lines in Fig. 7

depict the heat capacity of this sequence. The presence
of a phase transition manifests itself in the peak in ¢ at
T =~ 0.14¢3/a (for L = 11) which grows (and slightly
shifts towards higher temperatures) as L increases. Fig-
ure 7 shows that the average heat capacity of random
PAs with Q = 0 also has a peak at T = 0.17¢2/a (for
L = 11). As the high temperature phase is no longer
swollen (for @ = 0), there are again two possible in-
terpretations of this heat capacity peak. One is that it
represents a crossover remnant of the 6 transition, with
an increase in the density of the compact polymer. In-
deed, the peak is lower and broader than that of alternat-
ing chains. Another possibility is that there is a “glass”
transition in which the “molten globule” freezes into its
“ground state.” The proximity of the peak temperature
to the energy gap for the first excited state supports the
latter conclusion.

No corresponding anomaly was observed in the MC
simulations [14,15]. Since finite size effects are extremely
important in such small systems, the heat capacity peak
should be regarded only as a suggestion for the presence
of a “fg transition.” As indicated by the dashed line in
Fig. 1, the location of such a transition may depend on
Q, disappearing at Q ~ gov/N, consistent with other fea-
tures of the phase diagram. This behavior is analogous
to that of the # point in the RSRIM [17], although in
that case the limiting charge scales linearly with V. Ad-
ditional studies are needed to establish the 65 transition.

VI. POLYMER SHAPES

The contour plots in Fig. 8 depict the number of states
as a function of both Rg and E for three sequences of
L = 10 with charges Q = 1 (a), 5 (b), and 11 (c). At
high temperatures the typical configurations correspond
to the highest densities. In all three cases these config-
urations are located in the middle of the diagram and
behave essentially as SAWs. On lowering the tempera-
ture the polymer seeks out states of lowest energy which
are very different in the three cases. The approximately
neutral chain of Fig. 8(a) assumes a very compact shape
represented by the lower-left corner of the contours. The
presence of a specific heat peak is consistent with the
shape of this contour plot. While Rg increases monoton-
ically with T, the chains are too short to permit a quanti-
tative test for the presence of a 6 point from the scaling
of Rg. The lowest energy contour of the chain with Q =5
[Fig. 8(b)] is almost horizontal. Hence, upon lowering
the temperature the chain will not collapse, maintain-
ing an extended shape. Thus a putative transition must
disappear for larger Q. Finally, the fully charged poly-
mer in Fig. 8(c) expands from a SAW to the completely
stretched configurations represented by the lower-right
corner of the contour plot.

The low temperature results from MC simulations sug-
gest that Rz of a PA strongly depends on its charge,
crossing over from compact configurations at small Q to
extended states for larger Q. This is qualitatively sup-
ported by the ground state shapes in Fig. 2, and will be
more quantitatively examined here. Figure 9(a) depicts
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FIG. 8. Contour plots of the number of levels as a function
of R? (in lattice constants) and E (in units of g2 /a). The size
of each bin is 0.1 in the F direction, and 0.25 in the R;‘; di-
rection. The contours represent continuous interpolations at
levels 0.5, 33, 129, 513, 2049, and 8193. Each plot represents
a single chain with L = 10 and excess charge Q of (a) 1, (b)
5, and (c) 11.

the L dependence of R; for several choices of Q. The
vertical axis is scaled so that compact, i.e., fixed den-
sity, structures are represented by horizontal lines. Since
Q is fixed, the influence of the excess charge diminishes
as the length of the polymer is increased, and thus all
curves must asymptotically converge to the same hori-
zontal line. There is some indication of this in Fig. 9(a),
although the crossover is rather delayed for larger values
of Q. Since the unrestricted ensemble (solid circles) in-
cludes a large range of Q’s, it is not surprising that the
corresponding averages are not compact. The chains are
too short to extract a meaningful value for the exponent
v. Nevertheless, the effective slope of veg =~ 1/2 strongly
suggests that the average over an unrestricted ensemble
is not compact. By comparison, the corresponding re-
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sults for the RSRIM in Fig. 9(b) clearly indicate that the
averages both at fixed and varying @Q have similar fixed
density ground states.

Since the quench-averaged R; of the unrestricted en-
semble scales differently from the subensembles of fixed
Q, the former set must contain a non-negligible portion
of noncompact configurations for every L. It is natu-
ral to assume that the borderline between compact and
stretched states is controlled by Q. = gov'N. In previous
work [14,15] we argued that PAs undergo a transition to
an expanded state when Q exceeds Qg (o< Q.): the tran-
sition is more pronounced for larger L and lower 7. In
the MC simulations [14,15] we were able to use long PAs,
but were restricted to finite, albeit small, temperatures
which slightly smeared the transition in Ry with increas-
ing Q. In this study we know the exact ground states but
are limited to small Ls where the difference between R,
of compact and stretched states is less visible. The sum
of all eigenvalues of the shape tensor, RZ is somewhat in-
sensitive to an expansion since the increase in-the largest
eigenvalue is partially compensated by the decrease of
the other two eigenvalues. A clearer view is provided by
the ratios of the mean eigenvalues of the shape tensor as
depicted in Fig. 10. These ratios for different L’s can be
collapsed after scaling the charges by Q., consistent with
the MC simulations.

Figure 11 depicts (on a logarithmic scale) the distribu-
tion of values of R: in the ground states of all quenches
for L = 13. The distribution is peaked near the small-
est possible value of R;, but has a broad (possibly power
law) tail. If the tail falls off sufficiently slowly, it will
determine the asymptotic value of the exponent v: As
L increases the very large values of Rﬁ of the (minority)
stretched configurations will eventually dominate the to-
tal average. We thus expect veg to increase with L, and
the value of v.g extracted from the slope of the solid line
on Fig. 9(a) probably underestimates the true asymp-
totic value. To get further insight into the behavior for
larger L, we performed separate averages for the 80% of
configurations which have the smallest R:, and for the re-
maining top 20%. These averages are depicted in Fig. 12.
The vertical axis is again scaled so that compact struc-
tures are represented by horizontal lines. The bottom
80% indeed scale as compact chains while the top 20%,
which stand for the tail of the distribution, have radii that
grow with L with an effective exponent of veg ~ 2/3. We
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FIG. 9. Quench-averaged scaled RZ as a
function of the length of the polymer for
(a) PAs with electrostatic interactions, and
(b) random polymers with local interactions.
Open circles and dashed lines represent (from
bottom to top) the restricted averages with
Q =0, 1, 2, 3. Full circles and the solid line
represent unrestricted averages.
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FIG. 10. Ratios between the smallest and largest eigen-
values of the shape tensor (dashed lines), and between the
intermediate and largest eigenvalues (solid lines), for L = 8,
10, and 12 (full triangles, squares, and circles, respectively)
as a function of the scaled charge Q/Q.. The eigenvalues are
calculated from quench averages at fixed Q.

thus conclude that the R2 of the unrestricted ensemble
increases with L at least as fast as a SAW.

VII. ANNEALED POLYAMPHOLYTES

As a byproduct of our study, since we have access to
the complete set of quenches, we can find which partic-
ular sequence, restricted only by its net charge, has the
lowest energy. As this is the sequence that is selected in
a model in which the charges are free to change positions
along the chain, we shall refer to the results as describ-
ing the ground states of annealed PAs. For long chains,
neither the sequence, nor its spatial conformation, need
to be unique. However, for the sizes considered here, we
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FIG. 11. Probability distribution for RZ? of ground states
in the unrestricted ensemble of quenches for L = 12. RZ is
scaled by its minimal possible value, while the scale of the
probability is arbitrary.
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FIG. 12. Scaled partial averages of Rz of the ground states
for the 20% of quenches with largest Rgys (top curve), and
the remaining quenches (bottom curve) as a function of the
length of the PA.

always found a single ground state, several of which are
shown in Fig. 13 for L = 13 and different values of Q.
It appears that the optimal configurations correspond to
a uniform distribution of excess charge along the back-
bone. In particular, for small Q the preferred arrange-
ment is the alternating sequence which then folds into a
NaCl structure.

Previously [14,15], we suggested that annealed PAs
expel their excess charge (provided Q > goN'/3) into
highly charged “fingers.” As a result of such “charge
expulsion” the spanning length of annealed PAs should
increase dramatically (~ Q). However, since most of the
mass remains in a compact globule, Rz is not substan-
tially modified (as long as Q@ < Q. ~ goN'/2). The chains
used in our study are too short to exhibit an increased
spanning length with no change in R,. Moreover, the

FIG. 13. Spatial conformations of the ground states of an-
nealed PAs with L = 12, for values of Q/qo equal to (a) 1, (b)
3, (c) 5, and (d) 7. Dark and bright shades indicate opposite
charges.
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FIG. 14. Ground state energy per atom [23] for annealed
PAs as a function of polymer length. Each point represents a
single configuration for Q@ = 0, 1, 2, and 3, denoted by open
and full circles, and open and full triangles, respectively.

effects of lattice discreteness are much more pronounced
for annealed PAs where ground states correspond to a
single sequence. In the quenched case, averaging over all
sequences partially smooths out lattice effects. As partial
evidence we note that plots for the charge dependence of
ratios of eigenvalues of the shape tensor (analogous to
Fig. 10) exhibit better collapse with the variable Q/N1/3
than with Q/N1/2. However, given the scatter of the few
data points, the evidence for the appearance of “fingers”
is not really any more convincing than any conclusions
drawn from inspection of the ground states in Fig. 13.

As noted earlier, we expect the ground state of a suf-
ficiently long annealed PA with fixed @ to be the NaCl
structure. To test the approach to this limit, in Fig. 14
we plot the energies per atom of the ground states. As
in the case of quenched PAs (Fig. 5), we check for finite
size corrections proportional to the surface area. (Un-
like the case of quenched PAs, each point in this figure
represents a single configuration.) Here we used a value
of A = 0.35¢2/a although the results are rather insensi-
tive to this choice, and we estimate the accuracy of this
quantity as +0.10g2/a. The point of intersection with
the 1/N = 0 axis is close to the known value of the €.
Furthermore, A = (0.3540.10)¢2 /a corresponds to a sur-
face tension of 0.05 £ 0.03¢g2/a® which is also consistent
with the known value of yg. These consistency checks
add further confidence to the values of €. and v deduced
for quenched PAs.
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APPENDIX: RAYLEIGH INSTABILITY IN
ARBITRARY SPACE DIMENSIONS

In this appendix we discuss instabilities of charged d-
dimensional drops. A detailed discussion of the three-
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dimensional case can be found in Appendices B and C of
Ref. [15], which also provides other references to the sub-
ject. The energy of a charged conducting (hyper)sphere
of radius R with charge @ is given by

2

E = 'ySde_l + 2RA-Z

(d>2) (A1)
where the first term is the surface energy (7 is the surface
tension, and Sy denotes the d-dimensional solid angle),
while the second term is the electrostatic energy. (We
have used units such that, in d dimensions, the electro-
static potential at a distance 7 from a charge q is ¢/r%~%;
and glnr in d = 2.) For small Q, the sphere is stable
with respect to infinitesimal shape perturbations. How-
ever, when the electrostatic and surface energies are com-
parable, the drop becomes unstable. To explore this in-
stability we differentiate Eq. (A1) with respect to R to
find the pressure difference between the interior and the
exterior of the drop as

(d—=1)y
R

_(d-2)@?
2SdR2d—2 )

Ap = (A2)
The pressure difference vanishes when @ equals the
Rayleigh charge Qgr, where

2(d—1 -
@y =20V, prs (A3)
d—2

For Q > Qg a (hyper)spherical shape is unstable to small

perturbations; initially the drop becomes distorted and

subsequently it disintegrates. Note that Q% ~ R2473 ~

V2-3/d where V is the volume of the drop. When applied

to PAs, up to a dimensionless prefactor,

Q% ~ g N*73/4. (A9)

We can regard the first term in Eq. (Al) as setting

the overall energy scale, while the shape of the drop is
determined by the dimensionless ratio

a=Q%/Q% .

While from the above argument we conclude that the
spherical shape is (locally) unstable for a > 1, even
for o < 1, the energy of the drop can be lowered by
splitting into smaller droplets. In particular, we may
split away from the original drop a large number n, of
small droplets of radius R/n® and charge Q/n, and re-
move them to infinity. It can be directly verified that for
1/(d—1) < z < 1/(d — 2), the total electrostatic energy,
total surface area of the small droplets, as well as their
total volume, vanishes in the n — oo limit. Thus the
energy of any charged conducting drop can be lowered to
that of an uncharged drop by expelling a large number
of “dust particles” which carry away the entire charge.
(Of course this argument neglects the finite size of any
particles making up the drop.)

The globular phase of a quenched random PA is better
represented by a drop of immobile charges. Therefore, we
next consider a drop in which the charges are uniformly
distributed over the volume. The sum of the surface and

(A5)
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electrostatic energies is now given by

d @7
d+2Rd2"°
For sufficiently large @, the drop can lower its energy by

splitting into two droplets of equal size. This will occur
when a exceeds a critical value of

_2Yd_1 (d?—4)
T 1-—2-2/d2d(d—-1)’

E; = yS4R + (A6)

aqd

(A7)

which is equal to 0, 0.293, 0.323, 0.322, and 1/4, for
d = 2, 3, 4, 5, and oo, respectively. As the value of «
increases further, the drop splits into a larger number of
droplets. By examining the energy of a system of n equal
spherical droplets, we find that the optimal number is
proportional to a?/3. If the typical Q2 is proportional to
N (as happens in unrestricted PAs), while Q% is given
by Eq. (A4), the number of droplets scales as N1~4/3,
Thus d = 3 is a special dimension, above which a typical
PA prefers to stay in a single globule.
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